Stability of the Radau IA and Lobatto IIIC methods for neutral delay differential system
نویسندگان
چکیده
Numerical stability is considered for several Runge-Kutta methods to systems of neutral delay differential equations. The linear stability analysis is adopted to the system. Adapted with the equistage interpolation process as well as the continuous extension, the Runge-Kutta methods are shown to have the numerical stability similar to the analytical asymptotic stability with arbitrary stepsize, when certain assumptions hold for the logarithmic matrix norm on the coefficient matrices of the NDDE system. 1991 Mathematics Subject Classification: 65L05, 65L06, 65L20, 34K28
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملFull Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge–Kutta and hp-Finite Element Methods
The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretis...
متن کاملStability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations
In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....
متن کاملStiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator
Stiffly accurate implicit Runge–Kutta methods are studied for the time discretisation of nonlinear first-order evolution equations. The equation is supposed to be governed by a time-dependent hemicontinuous operator that is (up to a shift) monotone and coercive, and fulfills a certain growth condition. It is proven that the piecewise constant as well as the piecewise linear interpolant of the t...
متن کاملApplications of Gauss-Radau and Gauss-Lobatto Numerical Integrations Over a Four Node Quadrilateral Finite Element
In this paper Gauss-Radau and Gauss-Lobatto quadrature rules are presented to evaluate the rational integrals of the element matrix for a general quadrilateral. These integrals arise in finite element formulation for second order Partial Differential Equation via Galerkin weighted residual method in closed form. Convergence to the analytical solutions and efficiency are depicted by numerical ex...
متن کامل